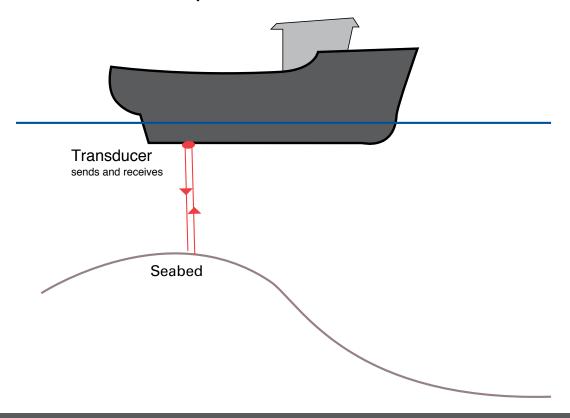


REMBER RULE 7: RISK OF COLLISION?

- A vessel is required to use ALL available means to determine whether risk of collision exists!
- Do not **over** rely on electronic navigation, especially Radar!

FATHOMETER


- Depth sounder
- Very simple but useful tool
- Easy to follow depth contours while navigating, especially during times of Restricted Visibility
- They are a great source of backup information to confirm a location
- Single Bearing Fix is possible with a reliable depth reading

DEPTH SOUNDS USE SOUND WAVES TO DETERMINE DEPTH

- Reflection
- Delay Strength of sound on return
- -Transducers/transponders send & receive

DEPTH SOUNDER

- Understand the settings on your depth sounder and allow for the transducer offset to the keel and waterline
- Depth alarms can be very useful
 - shallow water alarm
 - deep water alarm
 - specific depth alarm
- Variations in salinity may give false readings, with actual depths being greater than indicated
- Soft mud bottoms may return a double echo, one for the mud and a second showing the hard underlayer.
- Heavy masses of marine life, often microscopic, may return false bottom readings or show as a mid layer.

FISH FINDERS

- Fish finders are common on recreational vessels
- They function the same as a depth sounder, but have a screen to display the sonar returns, often showing the texture of the bottom and marine life
- Many use different or multiple sounding frequencies to provide a very detailed image

RADAR

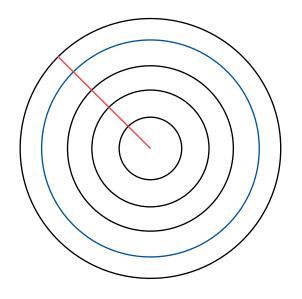
- A radar system sends out high frequency electronic pulses from its rotating antenna.
- When these pulses strike an object, the signal is reflected back to the antenna.
- The radar system then calculates the range and bearing of the object and displays it on the screen in a position relative to the center dot of the sweep.
- Keep in mind not all materials reflect these signals. Wood and plastic vessels require a radar reflector to be visible to the system.
- DO NOT RELY SOLELY ON RADAR: it may not show all traffic!

PPI

- Plan Position Indicator
- Most common type of radar display
- Antenna in center
- Concentric circles represent distance to the vessel and can be set with the range function

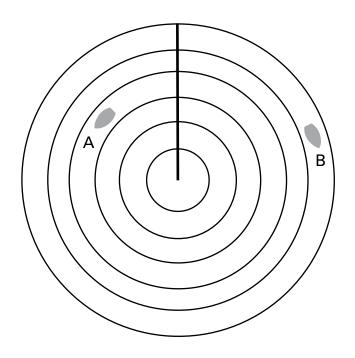
PILOTING BY RADAR

- Fog & low visibility

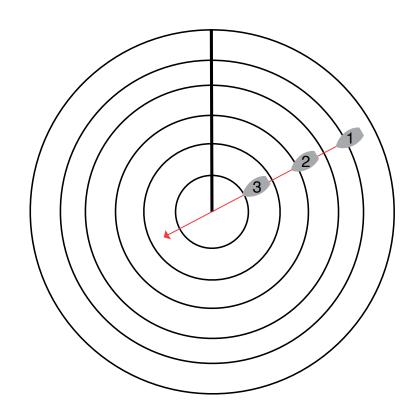

RADAR TERMS

- Range: distance something is from your vessel
 - Range rings on radar set by the user
- <u>Target</u>: any object detected in your vicinity
- Relative motion: target is displayed relative to your vessel
- <u>Head up</u>: always heading to the top of the screen
 - Heading mark

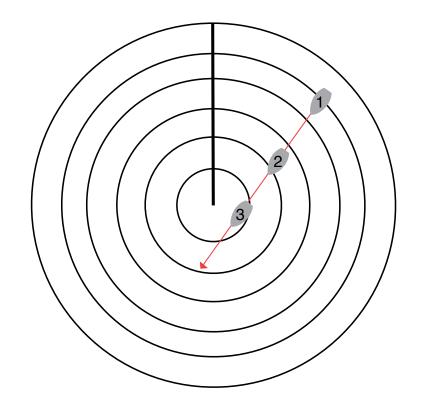
RADAR TERMS


- Variable Range Marker
- Electronic Bearing Line

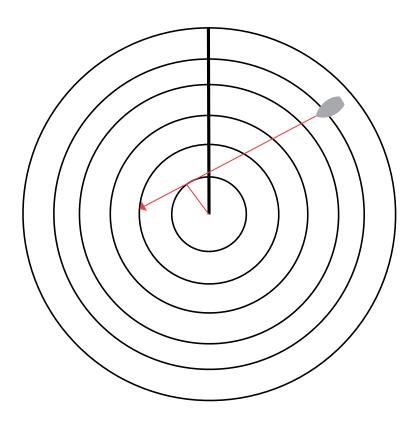
TARGETS


- Radar set to 6nm
- Rings 1nm
- A: Bearing 330ft; 3.5nm
- B: Bearing 60ft; 5.5nm

RISK OF COLLISON?


- This sequence of reflections indicate constant bearing and decreasing range.
- YES, there is a risk of collision!

RISK OF COLLISON?


- This sequence of reflections indicate changing bearing and decreasing range.
- There is not a risk of collision at this time, but beware if the target is large, there may still be risk

CLOSEST POINT OF APPROACH

 This function shows you the closest point of approach and enables you to tell the range when you will cross.

RESOLUTION

-clouds, waves, rain all must be accounted for when using radar.....

GPS

- Global Positioning System

SATELLITES

- GPS utilizes a series of satellites that are in geosynchronos (fixed) orbit. The GPS unit knows precisely where these satellites are.
- These satellites send a timed signal to the GPS unit, which calculates the distance to the satellite based on the time shift in the signal. With multiple signals, a "fix" is generated with varying degrees of accuracy.
- Only need 3 clear signals for a fix; greater accuracy with more.
- 21 active satellites around the globe
- 5 satellites available at one time
- You can track the location and signal strength of visible satellites within the unit's functions and display screens.

GPS ACCURACY

- Standard Positioning Service (SPS)
- Commercially accurate to 328ft (100m)
- Precision Positioning Service (PPS)
- Military accurate to 58.4 ft (17.8m)
 - Use only North American Datum (NAD-1983) or World Geodetic System (WGS-1984)

GPS RECEIVER CAPABILITIES

- Modern GPS units have tremendous capabilities, most with color screens and very high resolution of the local charts.
- Determines position
- Elapsed time and distance between points
- Range and Bearing to Waypoints or Cursor
- Course and Speed Over Ground (COG & SOG)
- Waypoints and routes
- May be interfaced with Radar, electronic mapping systems and autopilot